H2O2-responsive molecularly engineered polymer nanoparticles as ischemia/reperfusion-targeted nanotherapeutic agents
نویسندگان
چکیده
The main culprit in the pathogenesis of ischemia/reperfusion (I/R) injury is the overproduction of reactive oxygen species (ROS). Hydrogen peroxide (H2O2), the most abundant form of ROS produced during I/R, causes inflammation, apoptosis and subsequent tissue damages. Here, we report H2O2-responsive antioxidant nanoparticles formulated from copolyoxalate containing vanillyl alcohol (VA) (PVAX) as a novel I/R-targeted nanotherapeutic agent. PVAX was designed to incorporate VA and H2O2-responsive peroxalate ester linkages covalently in its backbone. PVAX nanoparticles therefore degrade and release VA, which is able to reduce the generation of ROS, and exert anti-inflammatory and anti-apoptotic activity. In hind-limb I/R and liver I/R models in mice, PVAX nanoparticles specifically reacted with overproduced H2O2 and exerted highly potent anti-inflammatory and anti-apoptotic activities that reduced cellular damages. Therefore, PVAX nanoparticles have tremendous potential as nanotherapeutic agents for I/R injury and H2O2-associated diseases.
منابع مشابه
Hydrogen Peroxide‐Responsive Nanoparticle Reduces Myocardial Ischemia/Reperfusion Injury
BACKGROUND During myocardial ischemia/reperfusion (I/R), a large amount of reactive oxygen species (ROS) is produced. In particular, overproduction of hydrogen peroxide (H2O2) is considered to be a main cause of I/R-mediated tissue damage. We generated novel H2O2-responsive antioxidant polymer nanoparticles (PVAX and HPOX) that are able to target the site of ROS overproduction and attenuate the...
متن کاملTargeted therapy using nanotechnology: focus on cancer
Recent advances in nanotechnology and biotechnology have contributed to the development of engineered nanoscale materials as innovative prototypes to be used for biomedical applications and optimized therapy. Due to their unique features, including a large surface area, structural properties, and a long circulation time in blood compared with small molecules, a plethora of nanomaterials has bee...
متن کاملThe Protective Effect of Antioxidant and Anti-inflammatory Nanoparticles in Renal Ischemia-Reperfusion Damage
Background& objectives: Renal ischemia-reperfusion (IR) damage occurs during renal transplantation in end-stage renal disease (ESRD) patients which activate immune responses. Inflammatory responses by increased levels of cytokines can lead to acute kidney injury (AKI) that contributes to the loss of renal grafts and graft dysfunction. The purpose of this study was to review the therapeutic effe...
متن کاملMagnetic nanoparticles grafted pH-responsive poly (methacrylic acid-co-acrylic acid)-grafted polyvinylpyrrolidone as a nano-carrier for oral controlled delivery of atorvastatin
Objective(s): Researchers have intended to reformulate drugs so that they may be more safely used in human body. Polymer science and nanotechnology have great roles in this field. The aim of this paper is to introduce an efficient drug delivery vehicle which can perform both targeted and controlled antibiotic release using magnetic nanoparticles grafted pH-responsive polymer.<s...
متن کاملPolymeric composite membranes for temperature and pH-responsive delivery of doxorubicin hydrochloride
Objective(s): Nowadays hydrogels are one of the upcoming classes of polymer-based controlled-release drug delivery systems. Temperature and pH-responsive delivery systems have drawn much attention because some diseases reveal themselves by a change in temperature and/or pH. The objective of this work is to prepare and characterize composite membrane using responsive nanoparticles into a polymer...
متن کامل